
JOURNAL OF COMPUTATIONAL PHYSICS 92, 296-312 (1991)

The Parallel Fourier Pseudospectral Method

RICHARD B. PELZ

Mechanical and Aerospace Engineering, Rutgers lhkersity,
Piscataway, New Jersey 08855-0909

Received November 7, 1988; revised August 3, 1989

Parallel algorithms of the Fourier pseudospectral method are presented for the solution of
the unsteady, incompressible Navier-Stokes equations, The only major operation that
requires parallelization is the multidimensional FFT. In tests performed on a 1024-node
hypercube computer, an efficiency of about 83 ‘%I is obtained for a three-dimensional problem
with mesh size 1283. The all-FORTRAN code requires 17 s per timestep, rivalling rates
obtained from optimized codes on current supercomputers. ‘5 1991 Academic Press, Inc.

I. INTRODUCTION

Spectral methods have been useful tools for the examination of many unsteady
flow phenomena including turbulence [18], shear layers [15], vortex interactions
[13, 141, global weather prediction [S] and astrophysical applications [l, 111. In
such methods each flow variable is represented as a finite series expansion in
orthogonal polynomials which results in exponential-order accuracy, provided the
flow is smooth. The pseudospectral method, which is perhaps the most widely used
method for nonlinear problems, employs series expansions as interpolation func-
tions for the flow variables. An excellent review of these methods is given by
Canuto ef al. [3].

Simulation of realistic flows possessing a large number of degrees of freedom, is
presently unrealistic because of the large amount of computational resources
required. This is true for spectral methods even though they require fewer mesh
points for the same accuracy than most other methods. Parallel processing shows
the promise of delivering necessary resources at a relatively low cost. The crucial
question is, in spite of the global nature of spectral methods, can high parallel
performance be obtained ?

The purpose of the present work is to investigate the performance of pseudospec-
tral methods on distributed-memory, MIMD computers with a hypercube connec-
tion network. The problem is the time-integration of the Navier-Stokes equations
for incompressible flows in three dimensions. Domain decomposition is used to
parallelize the problem. Algorithms for the simplest and perhaps most effective
method, the Fourier pseudospectral method, are devised [16]. While the type of
representation in the directions that are distributed across processors is constrained

OOZl-9991/91 $3.00
Copyright ,D 1991 by Academic Press. Inc.
AlI rights of reproduction in any form reserved.

296

THE PARALLEL FOURIER PSEUDOSPECTRAL METHC?D 297

to be Fourier, any discretization scheme can be employed in the other directions.
For simplicity, however, a Fourier series representation is used in all directions.
It is shown that the multidimensional Fourier transform is the only operation
in which a significant amount of communication is required. Implementation
and experimentation is performed on the NCUBEjl computer with up to IL124
processors.

An MIMD, distributed-memory computer has many relatively unsophisticated
processors, each operating independently with individual codes and operating
systems. They are connected loosely by a communication network which uses a :“a%,
user-invoked message-passing system. In the hypercube network each processor
is directly connected to d= log,P (P is a power of 2) neighbors. The maximum
number of intermediate processors through which a message must pass is ii- ‘i,
Processors are assigned labels, numbers from 0 to P - i. A “nearest neighbor” pair
is defined as two processors whose binary labels differ in only one place.

The structure of the paper is as follows. In Section II we review the spectral and
timestepping schemes. The discussion in Section III is about parallelization using
domain decomposition. Methods for performing the parallel multidimens~o~aI
transforms are presented in Section IV. Results from actual performance tests are
presented in Section V. Section VI contains some concluding remarks and
extiapolation of performance to future computers.

II. THE FOURIER PSEUDOSPECTRAL METHOD

In this section we review the Fourier pseudospectral method and timestepping
scheme for our problem. The Navier-Stokes equations can be written

where M is the velocity field, w is the vorticity field. v is the dynamic viscosity, and
f is a conservative body force. With unit density, the stagnation pressure: P,, is
expressed as P + ~‘12, where P is the static pressure.

Taking the divergence of (1) and applying the constraint of incompressibility, we
find the expression for stagnation pressure in an incompressible flow is:

dP,=V.luxco), (2)

The boundary conditions are that the flow variables be periodic in each direction.
In the Fourier pseudospectral approximation, the solution: defined on an equally

spaced me&, is represented by a finite Fourier series. The coefficients are foound by
insisting that the series be an interpolation function at the mesh points. Using the
discrete Fourier transform the Fourier coefficients are found from the values oe’
the flow variables at the mesh points. The gradient of u has the form i
the divergence has the form ik . Ei, where ii is the Fourier coe&cient of u and k is

298 RICHARD B. PELZ

the wavevector. The fast Fourier transform (FFT) provides a rapid way to switch
bases from mesh-point (physical space) to coefficient (spectral space) representation.

The convergence of the pseudospectral approximation to the true solution is
more rapid than any algebraic power of the mesh size for smooth solutions. The
convergence is exponential for analytic solutions [20].

A hybrid explicit/implicit scheme involving leap-frog and Crank-Nicholson
methods is used for time advancement. Letting the superscript n denote the time
level n .dt, the second-order accurate (in time) approximation to (1 j is

u n+l-Ull-l

2 At
=(uxW)“-(VPo)“+P+fd(““+‘+““-l).

The timestepping scheme can be written as an explicit step, a step to enforce incom-
pressibility and an implicit step:

u*=(1+vAtA)u”-‘+2At(uxw+f)“.

(AP,)” = V. u*/2 At

(14AtA)u”+‘=u*-2At(VP,)“.

(44

(4b)

(4c)

There are four Poisson equations to be solved per timestep in the three-dimensional
problem. All derivative and Laplacian operations are performed on the Fourier
coefficients. Note that for V . un- r = 0 and conservative body forces, (4b) is identical
to (2). By judicious arrangement of operations, the number of transforms can be
kept to a minimum.

III. DOMAIN DECOMPOSITION

Parallelization of the problem is achieved by dividing the domain into P
subdomains each with the same number of points and mapping them onto P
processors. The number P is factored into P,. P,. P, which are the number of
processors that are employed in the decomposition in the x, y and z directions,
respectively. Figure 1 shows a decomposed domain with P = 16, P, = 2, P-,, = 2 and
P, = 4. The subdomains are mapped sequentially onto the hypercube processors.

In physical space the arrays are indexed

(1 :nx, 1 :nq’, 1 :nz).

Processor q contains the subarray

(5)

4x.?+ 1 : (qx+ I).?, q,
x

.~+l:(4r+l).~,q,.~+l:(q,+1).~, (61
x Y .b z

THE PARALLEL FOURIER PSEUDOSPECTRAL METHOD 799

14

I?& 10
13

6g

s

*&

FIG. 1. A domain that is decomposed in three directions and the mapping cnic a 16-node >yper-
cube. P, = 3, P, = 2, and P1 = 4.

where

q.X = 4 modulo P,

4 qF = - modulo P,
PX

42 = 9lPx p .I’

In spectral space the decomposed arrays have the same structure. The wave-
number array for a complex array is

In the decomposition, P, <KY/~, so that complex numbers are not split.
Now we identify which operations in (4) require flow variables from another

processors and which do not.
If the flow variables are in spectral space, then the derivative, Laplacian, and

inverse Laplacian operations do not require any communication of data between
processors. If the flow variables, u and CO, are in physical, mesh-point representa-
tion, the calculation of the nonlinear term, u x CO, does not require communication
between processors. The only operation in (4) that does require communication
between processors is the Fourier transform of vectors distributed across pro-
cessors. In the next section we shall discuss ways of performing this task.

IV. THE PARALLEL MULTIDIMENSIONAL FFT

Due to the importance in areas such as image and signal processing, there have
been many investigations of parallel implementation of the FFT, [4, 5, 10, 19J

300 RICHARD B. PELZ

There are two competing methods for the multi-dimensional transform. One
involves using a one-dimensional, parallel FFT algorithm for vectors distributed
across processors and a one-dimensional, serial FFT for the vectors that are not
distributed. We shall call this the distributed FFT method. The other is to
rearrange the data so that all transforms are done locally. Chu [S] examined these
methods for the two-dimensional transform and found that although the latter
method is asymptotically faster, their performance was similar in practice. We shall
examine both for our application.

The three-dimensional Fourier transform of an array in physical space to spectral
space proceeds first with a real-to-conjugate symmetric (RCS) Fourier transform of
ny. IZZ vectors of length nx. A complex-to-complex (CC) Fourier transform is then
performed on (rzx/2) . nz vectors of length ny. Finally, a CC transform is performed
on (nx/2) . ny vectors of length nz.

In examining the distributed FFT method, let us first consider decomposition in
the 4’ and z directions; only the CC transform must be performed in parallel. The
minimum communication, parallel extension of the Cooley-Tukey FFT is given by
Swarztrauber [191.

The graph of this algorithm is given in Fig. 2 for a vector length n = 8 and P = 4.
The complex vectors -yi, x:“, and q, j= 0, II - 1, are the input, ith stage and
output vectors, respectively. The upward bracket, line, and downwards bracket
indicate that the elements above the upper bracket are sent across the network and
positioned under the lower bracket in the receiving processor. The circle with plus
sign represents the addition of the elements from above and the replacement of the
left with the sum. The circle with the minus sign and W next to it represent the sub-
traction of the right from the left input elements. The result is multiplied by Wj, the
jth root of unity. The product replaces the right input element in memory. The
number of arithmetic operations is 5 (n/P) logI n. There are 2d + 1 nearest-neighbor
communications of vector length n/(2P).

For m transforms, each element is an m-tuple and the transform is performed on
the last index. This prevents gather-scatter operations before communications.
Local index transposition, however, must be performed on the array during the
multi-dimensional transform.

An additional e(d) communications of the complete subvectors are required to
rearrange the bit-reversed array. This operation is time-consuming. In the Fourier
pseudospectral method, however, this reorganization is not necessary. If the arrays
are arranged sequentially in spectral space, they will be in bit-reversed order in
physical space. Since the nonlinear term (in 4a) is a pointwise calculation, the
particular order of the variables u and o is irrelevant, provided each array is
consistently ordered. The inverse CC transform of an array in bit-reversed order
proceeds similarly to the forward transform. Only nearest-neighbor exchanges of
data are required.

The parallel transform in the x direction needs special attention. In transforming
from physical space, vectors with real elements are transformed into conjugate sym-
metric vectors. Cooley, Lewis, and Welch [6] have shown that the RCS transform

THE PARALLEL FOURIER PSEUDOSPECTRAL METHOD

Comm 1

Comm 2

Comm 3

stage 2

Proc 0 P;oc 3

FIG. 2. A graph of the load-balanced, parallel, FF7 a!goriihm. P = 4, II = 8.

can be accomplished using a CC transform of a vector of half the length. Suppose
the real vector, J;, j= 0, 2n - 1, is to be transformed into the conjugate sym-
metric vector Ck7 k=O,
j = 0, . ..)

II. We first create a complex vector .yj = y2! + QzJ _ :,
n - 1. The n-point CC transform is then employed to transform +i into A;,,

k=05 . ..) 3 - 1. The following reflection operation is then used to create the
conjugate symmetric vector

where k = 0, 1, n/2, W:,, is the kth root of 2n roots of unity and ()* denotes the
complex conjugate. The creation of the complex vector .yj is a local operation. The
parallel CC transform proceeds as described above. The reflection operation (8)
requires communication.

302 RICHARD B. PELZ

Figure 3 shows the graph of a nearest-neighbor communication algorithm that is
used to rearrange a sequentially ordered vector into a form that can be used for the
reflection. To accomplish this, d communication stages with vector length n/P or
n/P- 1 are necessary. This is approximately the same amount of communication
necessary for the parallel CC transform. The communication time is a large part of
the total time of the vector manipulation; hence, the RCS transform is less efficient
than the parallel CC transform. The RCS transform still requires much less time,
however, than the CC transform of the original real vector.

If the binary reflected grey code sequence is used to map the subvectors onto the
processors, the reflection can be accomplished in one nearest-neighbor communica-
tion and a single element shift. The graph of the communication algorithm is shown
in Fig. 4. The communication in the CC transform, however, is between processors
that are a distance of two away from each other (next-nearest-neighbors). The
amount of data times the distance traveled is essentially the same for both orderings.
No significant difference in performance is seen.

The distributed FFT method for the three-dimensional transform begins with the
array ordered sequentially in spectral space. A CC transform in performed in the z
direction. The second and third indices are then switched locally. A CC transform
is performed in the y direction. The first and third indices are then switched locally.
Finally, a CSR transform is performed in the x direction.

A second method of performing the multi-dimensional FFT on distributed arrays
is to rearrange the data so that the vectors in the distributed direction become
complete within the memory of the processors. Only local FFTs are necessary.
The vectors in another direction become distributed so that the total memory
requirements remain constant. This can be accomplished by the transpose.

Figure 5 shows a graph of the block transpose algorithm in which nearest-
neighbor parallel communication can be used to transpose a matrix. In the figure,

Communication 1

Communication 2

Communication 3

FIG. 3. A graph of the communication algorithm for the reflection operation. P= 8, n = 16, sequen-
tial ordering. The input and ouput vectors are in order so that Eq. (8) can be performed in an element-
by-element fashion.

THE PARALLEL FOURIER PSEUDOSPECTRAL METROO

Shiit
\

FIG. 4. A graph of the communication algorithm for the reflection operation. P = 8. n = 16. binary
reflected grey code ordering. The input and output vectors are in order so tha: Eq. (8.j can be performed
in an element-by-element fashion,

a matrix which is column-distributed is rearranged to be ro-w-distributed. The com-
munication structure is similar to the parallel CC transform. For more information,
see McBryan and van de Velde [12]. For three-dimensional problems, the trans-
pose is performed on the last two indices to reduce the number of gather-scatter
operations.

Consider decomposition in only two directions and ns = ql= nz. The subarray in
spectral space with P; = 1 is indexed as

(
1 :

n x/2
-, l:?, I:nr
PX

.
I >

A serial CC transform in the z direction is performed locally. The second and third
indices are then transposed yielding:

PrOCt?SSOI

Comm 1

Camm 2

(. 1 . m/2
-, 1::. 1:q
p, I 1

0 1 2 3

12;314,121 222324j.31 323334141 4243

FIG. 5. A graph of the block transpose algorithm. P = 4, 4 x 4 matrix. The element ij is the eierr,eri
i:l the ith row and jth column.

304 RICHARD B. PELZ

A serial CC transform in the y direction is performed locally. The first and second
indices are then switched locally giving

Finally a block transpose is performed making the x direction complete, and a CSR
transform on the last index is performed completing the 3D transform.

The methods for the three-dimensional FFT presented above and the steps in (4)
represent the parallel Fourier pseudospectral method. In the following section we
shall examine the performance on a hypercube computer.

V. ACTUAL PERFORMANCE ON THE HYPERCUBE

In this section we present benchmark results found using the NCUBE/l computer
for the parallel Fourier pseudospectral method.’ The distributed FFT and block
transpose methods are compared. Both single precision (32-bit) and double preci-
sion (64-bit) versions are tested. Timings and efficiencies are presented for many
cases. A study of how performance varies with subdomain shape is also presented.

The NCUBE/l computers employed here are a 128-node machine at the CAIP
parallel processing laboratory at Rutgers and a 1024-node machine at Sandia
National Laboratories in Albuquerque, NM. Each processor (or node) is a 32-bit
serial processor specially designed by NCUBE. It is purported to have 300
KFLOPS computational rate, but in reality, we have found that this rate is closer
to 100 KFL.OPS. Each processor has 4 Mbytes of RAM, 480 Kbytes of which can
be used for program and arrays.

The memory constraints produce an upper bound on the mesh size. The algo-
rithm calls for 10 large arrays: 3 velocity, 3 vorticity, and 3 velocity at the previous
time level. The maximum number of mesh points per processor is then 213. One
processor can be used to solve a problem with 32 x 162, for example.

There is also a 26 Kbyte upper bound on the length of a message that can be
passed between processors. For an array that is a power of two, an exchange can
be no more than 2r1 32-bit words. Of course, longer exchanges can be accomplished
in two communications, but a serious degradation in performance results.

The maximum mesh sizes that can be handled are 128 x 642 and 256 x 128’ for
the L28- and 1024-node machines, respectively. The latter is a typical mesh on
which turbulence databases are generated for current supercomputers.

The particular choice of initial conditions is not crucial to test the parallel perform-
ance of the algorithms. The conditions need, however, to be typical, requiring all
terms and stages in (4) to be calculated. We have chosen two cases that have solu-
tions that are easily verifiable: the Taylor-Green vortex and the 3-mode Beltrami
superposition commonly called the ABC flow (for Arnold, Beltrami, and Childress).

’ New timings on the NCUBE/Z and Intel iS60 can be obtained from the author.

THE PARALLEL FOURIER PSEUDOSPECTRAL METHOD ‘jig5

A detailed study of the flow that evolves from the Taylor-Green vortex initial
conditions is given by Brachet et al. [Z]. The initial conditions are

u=(cos.u.sinjl.cosz, -sinx.cosJ!.cos7,0ji (12)

which results in certain symmetries being preserved for ail t > 0. The resolution
of the simulation can be increased by usin g expansions that also obey these
symmetries. In our study, however, none of the spatial symmetries are enforced;
ail modes are calculated. The Reynolds number is taken low enough so that these
symmetries remain naturally. The fact that they are preserved provides a check for
the computer code. Results from runs made on the Cyber 205 and the i%CUBE
compare to within the round-off error for all simulations.

Beltrami flows, superpositions of circularly polarized waves, have the distinction
of being the only steady Euler solution that can have chaotic streamfines [7]. The
simplest of these flows, the ABC flow, is’given as

u=iB.cosy+C.sinz, C.cos~+A.sinx, if.cosx+B~sin~), [IS)

where A, B, and C are constants. The Beltrami property, w = constant. u, causes
the nonlinear term to vanish. To make a Beltrami flow a stea
Navier-Stokes equations, a body force of the form f = sk’u is a
tions in order to overcome viscous dissipation. The flow when t is greater than 0
should be steady and have only one nonzero wavenumber mode.

Since the Reynolds numbers is low and the resolution is relatively high, the

-Yr--4’,
2.0 4.0 6.0 6.0

Dimension

FIG. 6. The wall-clock seconds versus numbei of processors employed for one timestep of tke
Fourier pseudospectral, single-precision simulation of the three-dimensional Navier--Stokes equations.
A base 2 logarithm scaling is used for both the ozdinate and abscissa.

306 RICHARD B. PELZ

aliased modes are thought to have a negligible effect on the dynamics. They were
not removed in the simulations. The neutrally stable timestepping scheme was not
stabilized either. These operations, however, could have been done completely in
parallel and would have enhanced the parallel performance.

Benchmark timings for simulations of one timestep of the three-dimensional
Navier-Stokes equations are presented in Fig. 6. Plotted is the base 2 logarithm of
the wall-clock time in seconds versus the base 2 logarithm of the number of
processors (dimension). Four cases are shown: 323, 643, 1283, and 256 x 128’ mesh
sizes. The symbols are the experimental findings and the straight lines represent the
linear performances. If P processors are employed for a problem, the linear perfor-
mance is the single-processor time divided by P.

Since none of the cases shown in Fig. 6 can actually be performed on a single
processor, the time is estimated by dividing the total number of arithmetic opera-
tions by the computational rate. The total number of floating-point operations for
one timestep is

FLOPS = y ny . nz [(y&.*9+313]. 60 log, (14)

The first term in square brackets comes from the 12 three-dimensional FFTs, and
the last term is the operations in (4). The computational rate is determined
experimentally using (14) and the timings for many single-processor runs. The
KFLOPs rate was approximately 110 for runs with large mesh sizes.

By dividing (14) by this rate, the linear performances in Fig. 6 are found. The

3-D NS
b

o 32x32~32
oxs4

A 128x128~128
0,

0.0 2.0 4.0 6.0 8.0 10.0

Dimension

FIG. 7. The efficiency versus processor dimension for the Fourier pseudospectral, single-precision
simulation of the three-dimensional Navier-Stokes equations.

THE PARALLEL FOURIER PSEUDOSPECTRAL METHOD 327

experimental results appear to asymptote to the linear performance lines as rhe
dimension decreases; thus, the single-processor estimate is close to the actual time.

One timestep for a 12S3 mesh on 1024 processors is accomplished in iess than
17 s of wall-clock time. This case is typical for direct simulations of turbulence run
on supercomputers. With assembly-coded FFTs and fully vectorized codes, the
CPU seconds per timestep are 16 and 23 for the CRAY XMP and 2-pipe CY
205, respectively. We should like to stress that the codes running on the NCUWE
have been written entirely in FORTRAN 77. No attempt has been made tc
optimize it rn any way.

Figure 7 shows the efficiency versus dimension for the cases shown in Fig. 6.
Efficiency is defined as

Efficiency = (T, >,

where 7, is the time to complete one timestep when only one processor :s
employed, and (T,) is the average of times reported by the P processors which are
employed on the problem. This is a measure of how close the experimental timings
are to the linear performance. The value of T, is calculated using i 14). The standard
deviation of the set (T,) from the P processors varied less than 1 o/o indicating a
balanced computationai load.

The efficiency decreases in an approximately linear fashion for low dimension
and decreases more severely for high dimension. The latter behavior is due to I
communication startup time becoming a significant part of the communication
time.

‘\ 3-D NS 2X ~
\ 32x32~32 LII-

‘\
.\

c 32x32~32 Expt
\ 64x64~64 Lin

‘l 0 64x64~64 Expt
1. ” 128x128~128

‘\
I\ ‘\

\\
‘\

‘\
\\

\ \., ‘\

‘\
‘\-

‘\~\ i3 \\

v ‘\ t
‘\

‘l.”
$I,__,2

0.0 2.0 4.0 6.0 8.0 10 0

Dimension

FIG. 8. The wall-clock seconds versus processor dimension for one timestep of the F‘ocrier
pseudospectral, double-precision simulation of the three-dimensional Wavier-Stokes equations.

308 RICHARD B. PELZ

A simple model of efficiency illustrates this point. Neglecting processor idle time,
the total time is

T, = Tplc + Tymm. (16)

Assuming there are no redundant calculations, Ty” can be written as TCpa”= T,/P.
The efficiency is then

Efficiency z 1 - TcpOmm/Tcpal’. (17)

Using (14) for the calculation time and taking the time for a communication
exchange to be CI + /I. (message length), Eq. (17) becomes

Efficiency % 1 -
12d(a(2P/nx~ tzy. nz) + p)

y[60 log,((n.x/2) n~9.n~) + 313-J’ (18)

where y is the MFLOPS rate, d is the dimension, CI is the startup communication
time in microseconds and B is the message passing rate in microseconds per 64-bit
word.

For a fixed problem size and large granularity (cc//I < nx . ny . n~/2P), the
efticiency decreases linearly with dimension. When the granularity becomes small
enough for the startup time to be a significant part of the total communication
time, then the efficiency decreases as Plog, P.

The values of c(and /? for an exchange were experimentally determined to be
750 ps and 21 ps per 64-bit word. These values were estimated by taking the total
communication times for each run and fitting them to the function 12d[a + /?(num-
ber of 64-bit words in each communication)]. For a 323 mesh and P= 128, and for
a 64’ mesh and P = 1024, the startup time takes about 36% of the total com-
munication time. In Fig. 7 transition fom linear to a more severe decrease occurs at
approximately these values of processor numbers.

Benchmark timings for codes written in double precision are presented in Fig. 8.
Three cases are shown: 323, 643, and 128’. The rate for double precision arithmetic
operations is 15 % less than the rate for single precision. A word is twice as long

TABLE I

A Comparison between the Transpose and
the Distributed FFT Methods

I,?(ny nz P Transpose Dist FFT

32 32 32 8 32.1 23.6
32 32 32 16 16.7 12.2
32 32 32 32 8.67 6.44
64 64 64 64 39.5 28.2

Nore. The seconds per timestep required for the cases
described in columns I-4 are in columns 5 and 6.

THE PARALLEL FOURIER PSEUDOSPECTRAL METHOD 309

:I I
I ____ --i

0.0 2.0 4.0 6.0 8.0 ‘0 0

Dimension

FIG. 9. The efficiency versus processor dimension for the Fourier pseudospectral, double-precisicn
simulation of the three-dimensional Navier-Stokes equations.

in double precision; hence, the length of communicated data doubles. Compared to
single-precision, a larger percentage of total time is taken by the communication;
thus, a lower parallel performance results. Despite this, Fig. 8 shows that the
timings are still relatively close to the linear performances and that one timestep on
a P283 mesh with 1024 processors took about 23 s.

Efficiency for the double precision runs is shown in Fig. 9. The efficiency for a
128” mesh with 1024 processors has dropped to 78 % from the single precision
value of g3 o/o. The linear behavior is again observed. The data point corresponding
to 64’ mesh and dimension 7 is somewhat out of alignment, however.

TABLE II

Total and Communication time (Seconds per Timestep)
for 1283 Mesh and 1024 Processors

128 x 128 x 128 mesh, 1024 processors

p.r p, p, Seconds per timestep Communication time

1 32 32 16.9 2.69
2 3’ 16 18.1 2.99
4 16 16 18.4 3.30
8 16 8 18.7 3.55

16 8 8 19.1 3.86
32 8 4 19.6 4.39

,Voiote. Timings for various subdomain are given. P,, P,., and -p: are the
number of processors employed in the s, y, and 7 directions. respectwely.

310 RICHARD B.PELZ

TABLE III

Total and Communication Time (Seconds per Timestep)
for 64 x 256’ Mesh and 1024 Processors

64 x 256 x 256 mesh, 1024 processors

p, Seconds per timestep Communication time

32 32 34.0 5.20
64 16 34.0 5.19

128 8 34.1 5.20
16 64 34.0 5.21
8 128 34.1 5.26

Note. Timings for subdomain shapes that vary in the y and z directions
are given, P, = 1.

Table I shows some timings of typical cases comparing the transpose method and
the distributed FFT method. In each case P, = 1 so that the double transpose (11)
was not done. The x-transform was performed locally on the first index. Only the
two-dimensional FFT was distributed. One timestep using the distributed FFT
method takes consistently about 27% less time than one timestep using the trans-
pose method. The number of arithmetic operations for the two methods is the same.
The amount of communication for the transpose method is similar to that of the
distributed FFT method.

The reason for the difference in the two methods is that in the block transpose,
d- 1 stages require a time consuming gather-scatter operation. This operation is
indicated by the double bracket in Fig. 5. A better compiler or assembly-coded
gather-scatter routines [9] will tend to decrease the time required for this opera-
tion. The transpose method will then be competitive with the distributed FFT
method.

Table II shows the total time and communication time for one timestep of the
distributed FFT method, single precision, 12g3 mesh, and 1024 processors. Each
row corresponds to a different subdomain partitioning. As a larger percentage of
processors are employed in the x direction, the times increase. There is a large
jump between P, =0 and 1, due partly to a second local transpose that must be
performed in the latter case. The increase in both total and communication times
is due to the inefficiencies in the parallel RCS transform.

Table III shows results similar to those in Table II, except that only the y and -7
directions are distributed, and the mesh size is 64 x 256*. The changes in partition
of the y-z plane have little effect on the ,amount of time required for one timestep.

VI. CONCLUSIONS

The goal of this work was to assess the parallelization of the Fourier pseudospec-
tral method for Navier-Stokes simulations. It was found that while the amount of

THE PARALLEL FOURIER PSEUDOSPECTRAL METIIOD 311

data to be communicated is large and scales with the dimension of the problem, the
actual performance on problems of current interest is remarkably good. For a
problem with a mesh of 1283 points, the efficiency on a 1024~node hypercube is
about 83 O/b, and one timestep takes 17 s of wall-clock time. The code was written
entirely in FORTRAN with no optimization, assembler coding, or vectorization.

The high efficiencies are due to the fact that the only operation that requires
communication is the FFT and that the parallel FFT is load-balanced and efficient
for multi-dimensional transforms. The block transpose method is attractive for the
multi-dimensional transform; however, more time is required than the distributed
FFT method due to the inefficient gather-scatter operation. Efficiency of double
precision runs is lower than that of single precision because the amount of com-
munication is double in the former. Subdomain shape effects performance only
through the degree of distribution in the x direction. The parallel real-to-conjugate
symmetric transform, used in the x direction, is less efficient that the parallel com-
plex-to-complex FFT that is performed in the other directions.

In practice, each processor of the NCUBE/2 is about 5 times more powerful than
that of the NCUBE/l. A realistic estimate of elapsed time per timestep for a 1024’
mesh run on 8192 processors with 8 Mbytes of memory is about 5 min for an a!!
FORTRAN code,

ACKNOWLEDGMENTS

I thank R. Peskin and I. Nelken for helpful suggestions. I am grateful to R. Benner for hem in
accessing the hypercube at Sandia. The work was supported by the National Science Foundation under
Grant EET 88-08780. by Offtce of Naval Research under Grant N00014-89-J 1320, and by CAIP under
Grant P89-11. The tests were performed at the CAIP Parallel Processing Laboratory and at Sandia
National Laboratories in Albuquerque, NM. CAIP, Center for Computer Aids for Industria!
Productivity is an Advanced Technology Center of the New Jersey Commission of Science and
Technology at Rutgers University.

REFERENCES

1. S. BONAZZOLA AND J. A. MARCK, J. Comput. Phys. (1988).
2. M. E. BRACHET, D. I. MEIRON, S. A. ORSZAG, B. G. NICKEL, R. H. MORF. AND U. FRISCH, ; ?$iti

Merh. 130. 411 (1983).
3. C. CANUTO. M. Y. HUSSAINI, A. QUARTERONI, AND T. A. ZANG. Spectra! Method3 in Fluid qir:~nks

(Springer-Verlag, Berlin, 1987).
4. R. M. CHAbmERLhIN, Parallel Comput. 6, 225 (1988).
5. C. Y. CHU. Cornell University Department of Computer Science Report No. TR-87-850, 1987

(unpublished).
6. J. V%‘. COOLEY, P. .4. W. LEWIS. AND P. D. WELCH, J. Sound I’ib. 12. 3i5 (1970).
7. T. DOMBRE, U. FRISCH. J. M. GREEN, M. HENON. A. MEHR, .4x11 A. M. SOWARD, J. Fkid &lie&.

167, 353 (1986j.
8. C. T. GORDON AND W. F. STERN, Month. Weather Ret). 110, 625 (1982).
9. J. L. GUSTAFSON, G. R. MONTRY, AND R. E. BENNER, SIAhl J. Sci. Stai. Comput. 9, 609 (19E8).

10. R. W. HOCKNEY PND C. R. JESSHOPE. Parallel Computers 2 Wilger, Bristol, 1988).

312 RICHARD B. PELZ

11. J. LEORAT, A. POUQUET, AND J. P. POET, in Problems of Collapse and Numerical Relativity 134,
edited by D. Bancel and M. Signore (Reidel, Toulouse, 1983), p. 287.

12. 0. A. MCBRYAN AND E. F. VAN DE VELDE, SZilhf J. Sci. Stat. Comput. 8 (1986).
13. D. I. MEIRON, S. A. ORSZAG, AND M. J. SHELLEY, “A Numerical Study of Vortex Reconnection,”

in Mathematical Aspects of Vortex Dynamics, edited by R. Caflisch (SIAM, Philadelphia, 1989).
14. M. V. MELANDER, “Close Interactions of 3D-Vortices in Incompressible Flows,” in Mathematical

.4spects of Vorte,x Dynamics, edited by R. Caflisch (SIAM, Philadelphia, 1989).
15. R. W. METCALFE, S. A. ORSZAG, M. E. BRACHET, S. MENON, AND J. J. RILEY, J. Fluid Mech. 184,

207 (1987).
16. S. A. ORSZAG, Stud. Appl. Math. 50, 293 (1971).
17. R. B. FELZ, “Hypercube Algorithms for Turbulence Simulation, ” in 11 th International Conference on

Numerical Methods in Fluid Mechanics, edited by D. L. Dwoyer, M. Y. Hussaini, and R. G. Voigt,
Lecrure Notes in Physics, Vol. 323 (Springer-Verlag, Berlin, t989), p. 462.

18. R. S. ROGALLO AND P. MOIN, Annu. Ret]. Fluid Mech. 16, 99 (1984).
19. P. N. SWARZTRAUBER, Parallel Comput. 5, 197 (1987).
20. E. TADMOR, SIAM J. Numer. Anal. 23, 1 (1986).

