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Parallel algorithms of the Fourier pseudospectral method are presented for the solution of 
the unsteady, incompressible Navier-Stokes equations, The only major operation that 
requires parallelization is the multidimensional FFT. In tests performed on a 1024-node 
hypercube computer, an efficiency of about 83 ‘%I is obtained for a three-dimensional problem 
with mesh size 1283. The all-FORTRAN code requires 17 s per timestep, rivalling rates 
obtained from optimized codes on current supercomputers. ‘5 1991 Academic Press, Inc. 

I. INTRODUCTION 

Spectral methods have been useful tools for the examination of many unsteady 
flow phenomena including turbulence [18], shear layers [15], vortex interactions 
[13, 141, global weather prediction [S] and astrophysical applications [l, 111. In 
such methods each flow variable is represented as a finite series expansion in 
orthogonal polynomials which results in exponential-order accuracy, provided the 
flow is smooth. The pseudospectral method, which is perhaps the most widely used 
method for nonlinear problems, employs series expansions as interpolation func- 
tions for the flow variables. An excellent review of these methods is given by 
Canuto ef al. [3]. 

Simulation of realistic flows possessing a large number of degrees of freedom, is 
presently unrealistic because of the large amount of computational resources 
required. This is true for spectral methods even though they require fewer mesh 
points for the same accuracy than most other methods. Parallel processing shows 
the promise of delivering necessary resources at a relatively low cost. The crucial 
question is, in spite of the global nature of spectral methods, can high parallel 
performance be obtained ? 

The purpose of the present work is to investigate the performance of pseudospec- 
tral methods on distributed-memory, MIMD computers with a hypercube connec- 
tion network. The problem is the time-integration of the Navier-Stokes equations 
for incompressible flows in three dimensions. Domain decomposition is used to 
parallelize the problem. Algorithms for the simplest and perhaps most effective 
method, the Fourier pseudospectral method, are devised [16]. While the type of 
representation in the directions that are distributed across processors is constrained 
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to be Fourier, any discretization scheme can be employed in the other directions. 
For simplicity, however, a Fourier series representation is used in all directions. 
It is shown that the multidimensional Fourier transform is the only operation 
in which a significant amount of communication is required. Implementation 
and experimentation is performed on the NCUBEjl computer with up to IL124 
processors. 

An MIMD, distributed-memory computer has many relatively unsophisticated 
processors, each operating independently with individual codes and operating 
systems. They are connected loosely by a communication network which uses a :“a%, 
user-invoked message-passing system. In the hypercube network each processor 
is directly connected to d= log,P (P is a power of 2) neighbors. The maximum 
number of intermediate processors through which a message must pass is ii- ‘i, 
Processors are assigned labels, numbers from 0 to P - i. A “nearest neighbor” pair 
is defined as two processors whose binary labels differ in only one place. 

The structure of the paper is as follows. In Section II we review the spectral and 
timestepping schemes. The discussion in Section III is about parallelization using 
domain decomposition. Methods for performing the parallel multidimens~o~aI 
transforms are presented in Section IV. Results from actual performance tests are 
presented in Section V. Section VI contains some concluding remarks and 
extiapolation of performance to future computers. 

II. THE FOURIER PSEUDOSPECTRAL METHOD 

In this section we review the Fourier pseudospectral method and timestepping 
scheme for our problem. The Navier-Stokes equations can be written 

where M is the velocity field, w is the vorticity field. v is the dynamic viscosity, and 
f is a conservative body force. With unit density, the stagnation pressure: P,, is 
expressed as P + ~‘12, where P is the static pressure. 

Taking the divergence of (1) and applying the constraint of incompressibility, we 
find the expression for stagnation pressure in an incompressible flow is: 

dP,=V.luxco), (2) 

The boundary conditions are that the flow variables be periodic in each direction. 
In the Fourier pseudospectral approximation, the solution: defined on an equally 

spaced me&, is represented by a finite Fourier series. The coefficients are foound by 
insisting that the series be an interpolation function at the mesh points. Using the 
discrete Fourier transform the Fourier coefficients are found from the values oe’ 
the flow variables at the mesh points. The gradient of u has the form i 
the divergence has the form ik . Ei, where ii is the Fourier coe&cient of u and k is 
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the wavevector. The fast Fourier transform (FFT) provides a rapid way to switch 
bases from mesh-point (physical space) to coefficient (spectral space) representation. 

The convergence of the pseudospectral approximation to the true solution is 
more rapid than any algebraic power of the mesh size for smooth solutions. The 
convergence is exponential for analytic solutions [20]. 

A hybrid explicit/implicit scheme involving leap-frog and Crank-Nicholson 
methods is used for time advancement. Letting the superscript n denote the time 
level n .dt, the second-order accurate (in time) approximation to (1 j is 

u n+l-Ull-l 

2 At 
=(uxW)“-(VPo)“+P+fd(““+‘+““-l). 

The timestepping scheme can be written as an explicit step, a step to enforce incom- 
pressibility and an implicit step: 

u*=(1+vAtA)u”-‘+2At(uxw+f)“. 

(AP,)” = V. u*/2 At 

(14AtA)u”+‘=u*-2At(VP,)“. 

(44 

(4b) 

(4c) 

There are four Poisson equations to be solved per timestep in the three-dimensional 
problem. All derivative and Laplacian operations are performed on the Fourier 
coefficients. Note that for V . un- r = 0 and conservative body forces, (4b) is identical 
to (2). By judicious arrangement of operations, the number of transforms can be 
kept to a minimum. 

III. DOMAIN DECOMPOSITION 

Parallelization of the problem is achieved by dividing the domain into P 
subdomains each with the same number of points and mapping them onto P 
processors. The number P is factored into P,. P,. P, which are the number of 
processors that are employed in the decomposition in the x, y and z directions, 
respectively. Figure 1 shows a decomposed domain with P = 16, P, = 2, P-,, = 2 and 
P, = 4. The subdomains are mapped sequentially onto the hypercube processors. 

In physical space the arrays are indexed 

(1 :nx, 1 :nq’, 1 :nz). 

Processor q contains the subarray 

(5) 

4x.?+ 1 : (qx+ I).?, q, 
x 

.~+l:(4r+l).~,q,.~+l:(q,+1).~, (61 
x Y .b z 
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FIG. 1. A domain that is decomposed in three directions and the mapping cnic a 16-node >yper- 
cube. P, = 3, P, = 2, and P1 = 4. 

where 

q.X = 4 modulo P, 

4 qF = - modulo P, 
PX 

42 = 9lPx p .I’ 

In spectral space the decomposed arrays have the same structure. The wave- 
number array for a complex array is 

In the decomposition, P, <KY/~, so that complex numbers are not split. 
Now we identify which operations in (4) require flow variables from another 

processors and which do not. 
If the flow variables are in spectral space, then the derivative, Laplacian, and 

inverse Laplacian operations do not require any communication of data between 
processors. If the flow variables, u and CO, are in physical, mesh-point representa- 
tion, the calculation of the nonlinear term, u x CO, does not require communication 
between processors. The only operation in (4) that does require communication 
between processors is the Fourier transform of vectors distributed across pro- 
cessors. In the next section we shall discuss ways of performing this task. 

IV. THE PARALLEL MULTIDIMENSIONAL FFT 

Due to the importance in areas such as image and signal processing, there have 
been many investigations of parallel implementation of the FFT, [4, 5, 10, 19J 
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There are two competing methods for the multi-dimensional transform. One 
involves using a one-dimensional, parallel FFT algorithm for vectors distributed 
across processors and a one-dimensional, serial FFT for the vectors that are not 
distributed. We shall call this the distributed FFT method. The other is to 
rearrange the data so that all transforms are done locally. Chu [S] examined these 
methods for the two-dimensional transform and found that although the latter 
method is asymptotically faster, their performance was similar in practice. We shall 
examine both for our application. 

The three-dimensional Fourier transform of an array in physical space to spectral 
space proceeds first with a real-to-conjugate symmetric (RCS) Fourier transform of 
ny. IZZ vectors of length nx. A complex-to-complex (CC) Fourier transform is then 
performed on (rzx/2) . nz vectors of length ny. Finally, a CC transform is performed 
on (nx/2) . ny vectors of length nz. 

In examining the distributed FFT method, let us first consider decomposition in 
the 4’ and z directions; only the CC transform must be performed in parallel. The 
minimum communication, parallel extension of the Cooley-Tukey FFT is given by 
Swarztrauber [ 191. 

The graph of this algorithm is given in Fig. 2 for a vector length n = 8 and P = 4. 
The complex vectors -yi, x:“, and q, j= 0, . . . . II - 1, are the input, ith stage and 
output vectors, respectively. The upward bracket, line, and downwards bracket 
indicate that the elements above the upper bracket are sent across the network and 
positioned under the lower bracket in the receiving processor. The circle with plus 
sign represents the addition of the elements from above and the replacement of the 
left with the sum. The circle with the minus sign and W next to it represent the sub- 
traction of the right from the left input elements. The result is multiplied by Wj, the 
jth root of unity. The product replaces the right input element in memory. The 
number of arithmetic operations is 5 (n/P) logI n. There are 2d + 1 nearest-neighbor 
communications of vector length n/(2P). 

For m transforms, each element is an m-tuple and the transform is performed on 
the last index. This prevents gather-scatter operations before communications. 
Local index transposition, however, must be performed on the array during the 
multi-dimensional transform. 

An additional e(d) communications of the complete subvectors are required to 
rearrange the bit-reversed array. This operation is time-consuming. In the Fourier 
pseudospectral method, however, this reorganization is not necessary. If the arrays 
are arranged sequentially in spectral space, they will be in bit-reversed order in 
physical space. Since the nonlinear term (in 4a) is a pointwise calculation, the 
particular order of the variables u and o is irrelevant, provided each array is 
consistently ordered. The inverse CC transform of an array in bit-reversed order 
proceeds similarly to the forward transform. Only nearest-neighbor exchanges of 
data are required. 

The parallel transform in the x direction needs special attention. In transforming 
from physical space, vectors with real elements are transformed into conjugate sym- 
metric vectors. Cooley, Lewis, and Welch [6] have shown that the RCS transform 
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FIG. 2. A graph of the load-balanced, parallel, FF7 a!goriihm. P = 4, II = 8. 

can be accomplished using a CC transform of a vector of half the length. Suppose 
the real vector, J;, j= 0, . . . . 2n - 1, is to be transformed into the conjugate sym- 
metric vector Ck7 k=O, . . . . 
j = 0, . ..) 

II. We first create a complex vector .yj = y2! + QzJ _ :, 
n - 1. The n-point CC transform is then employed to transform +i into A;,, 

k=05 . ..) 3 - 1. The following reflection operation is then used to create the 
conjugate symmetric vector 

where k = 0, 1, . . . . n/2, W:,, is the kth root of 2n roots of unity and ( )* denotes the 
complex conjugate. The creation of the complex vector .yj is a local operation. The 
parallel CC transform proceeds as described above. The reflection operation (8) 
requires communication. 
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Figure 3 shows the graph of a nearest-neighbor communication algorithm that is 
used to rearrange a sequentially ordered vector into a form that can be used for the 
reflection. To accomplish this, d communication stages with vector length n/P or 
n/P- 1 are necessary. This is approximately the same amount of communication 
necessary for the parallel CC transform. The communication time is a large part of 
the total time of the vector manipulation; hence, the RCS transform is less efficient 
than the parallel CC transform. The RCS transform still requires much less time, 
however, than the CC transform of the original real vector. 

If the binary reflected grey code sequence is used to map the subvectors onto the 
processors, the reflection can be accomplished in one nearest-neighbor communica- 
tion and a single element shift. The graph of the communication algorithm is shown 
in Fig. 4. The communication in the CC transform, however, is between processors 
that are a distance of two away from each other (next-nearest-neighbors). The 
amount of data times the distance traveled is essentially the same for both orderings. 
No significant difference in performance is seen. 

The distributed FFT method for the three-dimensional transform begins with the 
array ordered sequentially in spectral space. A CC transform in performed in the z 
direction. The second and third indices are then switched locally. A CC transform 
is performed in the y direction. The first and third indices are then switched locally. 
Finally, a CSR transform is performed in the x direction. 

A second method of performing the multi-dimensional FFT on distributed arrays 
is to rearrange the data so that the vectors in the distributed direction become 
complete within the memory of the processors. Only local FFTs are necessary. 
The vectors in another direction become distributed so that the total memory 
requirements remain constant. This can be accomplished by the transpose. 

Figure 5 shows a graph of the block transpose algorithm in which nearest- 
neighbor parallel communication can be used to transpose a matrix. In the figure, 

Communication 1 

Communication 2 

Communication 3 

FIG. 3. A graph of the communication algorithm for the reflection operation. P= 8, n = 16, sequen- 
tial ordering. The input and ouput vectors are in order so that Eq. (8) can be performed in an element- 
by-element fashion. 
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FIG. 4. A graph of the communication algorithm for the reflection operation. P = 8. n = 16. binary 
reflected grey code ordering. The input and output vectors are in order so tha: Eq. (8.j can be performed 
in an element-by-element fashion, 

a matrix which is column-distributed is rearranged to be ro-w-distributed. The com- 
munication structure is similar to the parallel CC transform. For more information, 
see McBryan and van de Velde [12]. For three-dimensional problems, the trans- 
pose is performed on the last two indices to reduce the number of gather-scatter 
operations. 

Consider decomposition in only two directions and ns = ql= nz. The subarray in 
spectral space with P; = 1 is indexed as 

( 
1 : 

n x/2 
-, l:?, I:nr 
PX 

. 
I > 

A serial CC transform in the z direction is performed locally. The second and third 
indices are then transposed yielding: 

PrOCt?SSOI 

Comm 1 

Camm 2 

(. 1 . m/2 
-, 1::. 1:q 
p, I 1 

0 1 2 3 

12;314,121 222324j.31 323334141 4243 

FIG. 5. A graph of the block transpose algorithm. P = 4, 4 x 4 matrix. The element ij is the eierr,eri 
i:l the ith row and jth column. 
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A serial CC transform in the y direction is performed locally. The first and second 
indices are then switched locally giving 

Finally a block transpose is performed making the x direction complete, and a CSR 
transform on the last index is performed completing the 3D transform. 

The methods for the three-dimensional FFT presented above and the steps in (4) 
represent the parallel Fourier pseudospectral method. In the following section we 
shall examine the performance on a hypercube computer. 

V. ACTUAL PERFORMANCE ON THE HYPERCUBE 

In this section we present benchmark results found using the NCUBE/l computer 
for the parallel Fourier pseudospectral method.’ The distributed FFT and block 
transpose methods are compared. Both single precision (32-bit) and double preci- 
sion (64-bit) versions are tested. Timings and efficiencies are presented for many 
cases. A study of how performance varies with subdomain shape is also presented. 

The NCUBE/l computers employed here are a 128-node machine at the CAIP 
parallel processing laboratory at Rutgers and a 1024-node machine at Sandia 
National Laboratories in Albuquerque, NM. Each processor (or node) is a 32-bit 
serial processor specially designed by NCUBE. It is purported to have 300 
KFLOPS computational rate, but in reality, we have found that this rate is closer 
to 100 KFL.OPS. Each processor has 4 Mbytes of RAM, 480 Kbytes of which can 
be used for program and arrays. 

The memory constraints produce an upper bound on the mesh size. The algo- 
rithm calls for 10 large arrays: 3 velocity, 3 vorticity, and 3 velocity at the previous 
time level. The maximum number of mesh points per processor is then 213. One 
processor can be used to solve a problem with 32 x 162, for example. 

There is also a 26 Kbyte upper bound on the length of a message that can be 
passed between processors. For an array that is a power of two, an exchange can 
be no more than 2r1 32-bit words. Of course, longer exchanges can be accomplished 
in two communications, but a serious degradation in performance results. 

The maximum mesh sizes that can be handled are 128 x 642 and 256 x 128’ for 
the L28- and 1024-node machines, respectively. The latter is a typical mesh on 
which turbulence databases are generated for current supercomputers. 

The particular choice of initial conditions is not crucial to test the parallel perform- 
ance of the algorithms. The conditions need, however, to be typical, requiring all 
terms and stages in (4) to be calculated. We have chosen two cases that have solu- 
tions that are easily verifiable: the Taylor-Green vortex and the 3-mode Beltrami 
superposition commonly called the ABC flow (for Arnold, Beltrami, and Childress). 

’ New timings on the NCUBE/Z and Intel iS60 can be obtained from the author. 
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A detailed study of the flow that evolves from the Taylor-Green vortex initial 
conditions is given by Brachet et al. [Z]. The initial conditions are 

u=(cos.u.sinjl.cosz, -sinx.cosJ!.cos7,0ji (12) 

which results in certain symmetries being preserved for ail t > 0. The resolution 
of the simulation can be increased by usin g expansions that also obey these 
symmetries. In our study, however, none of the spatial symmetries are enforced; 
ail modes are calculated. The Reynolds number is taken low enough so that these 
symmetries remain naturally. The fact that they are preserved provides a check for 
the computer code. Results from runs made on the Cyber 205 and the i%CUBE 
compare to within the round-off error for all simulations. 

Beltrami flows, superpositions of circularly polarized waves, have the distinction 
of being the only steady Euler solution that can have chaotic streamfines [7]. The 
simplest of these flows, the ABC flow, is’given as 

u=iB.cosy+C.sinz, C.cos~+A.sinx, if.cosx+B~sin~), [IS) 

where A, B, and C are constants. The Beltrami property, w = constant. u, causes 
the nonlinear term to vanish. To make a Beltrami flow a stea 
Navier-Stokes equations, a body force of the form f = sk’u is a 
tions in order to overcome viscous dissipation. The flow when t is greater than 0 
should be steady and have only one nonzero wavenumber mode. 

Since the Reynolds numbers is low and the resolution is relatively high, the 

-Yr--4’, 
2.0 4.0 6.0 6.0 

Dimension 

FIG. 6. The wall-clock seconds versus numbei of processors employed for one timestep of tke 
Fourier pseudospectral, single-precision simulation of the three-dimensional Navier--Stokes equations. 
A base 2 logarithm scaling is used for both the ozdinate and abscissa. 
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aliased modes are thought to have a negligible effect on the dynamics. They were 
not removed in the simulations. The neutrally stable timestepping scheme was not 
stabilized either. These operations, however, could have been done completely in 
parallel and would have enhanced the parallel performance. 

Benchmark timings for simulations of one timestep of the three-dimensional 
Navier-Stokes equations are presented in Fig. 6. Plotted is the base 2 logarithm of 
the wall-clock time in seconds versus the base 2 logarithm of the number of 
processors (dimension). Four cases are shown: 323, 643, 1283, and 256 x 128’ mesh 
sizes. The symbols are the experimental findings and the straight lines represent the 
linear performances. If P processors are employed for a problem, the linear perfor- 
mance is the single-processor time divided by P. 

Since none of the cases shown in Fig. 6 can actually be performed on a single 
processor, the time is estimated by dividing the total number of arithmetic opera- 
tions by the computational rate. The total number of floating-point operations for 
one timestep is 

FLOPS = y ny . nz [ (y&.*9+313]. 60 log, (14) 

The first term in square brackets comes from the 12 three-dimensional FFTs, and 
the last term is the operations in (4). The computational rate is determined 
experimentally using (14) and the timings for many single-processor runs. The 
KFLOPs rate was approximately 110 for runs with large mesh sizes. 

By dividing (14) by this rate, the linear performances in Fig. 6 are found. The 

3-D NS 
b 

o 32x32~32 
oxs4 

A 128x128~128 
0, 

0.0 2.0 4.0 6.0 8.0 10.0 

Dimension 

FIG. 7. The efficiency versus processor dimension for the Fourier pseudospectral, single-precision 
simulation of the three-dimensional Navier-Stokes equations. 
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experimental results appear to asymptote to the linear performance lines as rhe 
dimension decreases; thus, the single-processor estimate is close to the actual time. 

One timestep for a 12S3 mesh on 1024 processors is accomplished in iess than 
17 s of wall-clock time. This case is typical for direct simulations of turbulence run 
on supercomputers. With assembly-coded FFTs and fully vectorized codes, the 
CPU seconds per timestep are 16 and 23 for the CRAY XMP and 2-pipe CY 
205, respectively. We should like to stress that the codes running on the NCUWE 
have been written entirely in FORTRAN 77. No attempt has been made tc 
optimize it rn any way. 

Figure 7 shows the efficiency versus dimension for the cases shown in Fig. 6. 
Efficiency is defined as 

Efficiency = ( T, >, 

where 7, is the time to complete one timestep when only one processor :s 
employed, and (T,) is the average of times reported by the P processors which are 
employed on the problem. This is a measure of how close the experimental timings 
are to the linear performance. The value of T, is calculated using i 14). The standard 
deviation of the set (T,) from the P processors varied less than 1 o/o indicating a 
balanced computationai load. 

The efficiency decreases in an approximately linear fashion for low dimension 
and decreases more severely for high dimension. The latter behavior is due to I 
communication startup time becoming a significant part of the communication 
time. 

‘\ 3-D NS 2X ~ 
\ 32x32~32 LII- 

‘\ 
.\ 

c 32x32~32 Expt 
\ 64x64~64 Lin 

‘l 0 64x64~64 Expt 
1. ” 128x128~128 

‘\ 
I\ ‘\ 

\\ 
‘\ 

‘\ 
\\ 

\ \., ‘\ 

‘\ 
‘\- 

‘\~\ i3 \\ 

v ‘\ t 
‘\ 

‘l.” 
$I,__,2 

0.0 2.0 4.0 6.0 8.0 10 0 

Dimension 

FIG. 8. The wall-clock seconds versus processor dimension for one timestep of the F‘ocrier 
pseudospectral, double-precision simulation of the three-dimensional Wavier-Stokes equations. 
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A simple model of efficiency illustrates this point. Neglecting processor idle time, 
the total time is 

T, = Tplc + Tymm. (16) 

Assuming there are no redundant calculations, Ty” can be written as TCpa”= T,/P. 
The efficiency is then 

Efficiency z 1 - TcpOmm/Tcpal’. (17) 

Using (14) for the calculation time and taking the time for a communication 
exchange to be CI + /I. (message length), Eq. (17) becomes 

Efficiency % 1 - 
12d(a(2P/nx~ tzy. nz) + p) 

y[60 log,((n.x/2) n~9.n~) + 313-J’ (18) 

where y is the MFLOPS rate, d is the dimension, CI is the startup communication 
time in microseconds and B is the message passing rate in microseconds per 64-bit 
word. 

For a fixed problem size and large granularity (cc//I < nx . ny . n~/2P), the 
efticiency decreases linearly with dimension. When the granularity becomes small 
enough for the startup time to be a significant part of the total communication 
time, then the efficiency decreases as Plog, P. 

The values of c( and /? for an exchange were experimentally determined to be 
750 ps and 21 ps per 64-bit word. These values were estimated by taking the total 
communication times for each run and fitting them to the function 12d[a + /?(num- 
ber of 64-bit words in each communication)]. For a 323 mesh and P= 128, and for 
a 64’ mesh and P = 1024, the startup time takes about 36% of the total com- 
munication time. In Fig. 7 transition fom linear to a more severe decrease occurs at 
approximately these values of processor numbers. 

Benchmark timings for codes written in double precision are presented in Fig. 8. 
Three cases are shown: 323, 643, and 128’. The rate for double precision arithmetic 
operations is 15 % less than the rate for single precision. A word is twice as long 

TABLE I 

A Comparison between the Transpose and 
the Distributed FFT Methods 

I,?( ny nz P Transpose Dist FFT 

32 32 32 8 32.1 23.6 
32 32 32 16 16.7 12.2 
32 32 32 32 8.67 6.44 
64 64 64 64 39.5 28.2 

Nore. The seconds per timestep required for the cases 
described in columns I-4 are in columns 5 and 6. 
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FIG. 9. The efficiency versus processor dimension for the Fourier pseudospectral, double-precisicn 
simulation of the three-dimensional Navier-Stokes equations. 

in double precision; hence, the length of communicated data doubles. Compared to 
single-precision, a larger percentage of total time is taken by the communication; 
thus, a lower parallel performance results. Despite this, Fig. 8 shows that the 
timings are still relatively close to the linear performances and that one timestep on 
a P283 mesh with 1024 processors took about 23 s. 

Efficiency for the double precision runs is shown in Fig. 9. The efficiency for a 
128” mesh with 1024 processors has dropped to 78 % from the single precision 
value of g3 o/o. The linear behavior is again observed. The data point corresponding 
to 64’ mesh and dimension 7 is somewhat out of alignment, however. 

TABLE II 

Total and Communication time (Seconds per Timestep) 
for 1283 Mesh and 1024 Processors 

128 x 128 x 128 mesh, 1024 processors 

p.r p, p, Seconds per timestep Communication time 

1 32 32 16.9 2.69 
2 3’ 16 18.1 2.99 
4 16 16 18.4 3.30 
8 16 8 18.7 3.55 

16 8 8 19.1 3.86 
32 8 4 19.6 4.39 

,Voiote. Timings for various subdomain are given. P,, P,., and -p: are the 
number of processors employed in the s, y, and 7 directions. respectwely. 
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TABLE III 

Total and Communication Time (Seconds per Timestep) 
for 64 x 256’ Mesh and 1024 Processors 

64 x 256 x 256 mesh, 1024 processors 

p, Seconds per timestep Communication time 

32 32 34.0 5.20 
64 16 34.0 5.19 

128 8 34.1 5.20 
16 64 34.0 5.21 
8 128 34.1 5.26 

Note. Timings for subdomain shapes that vary in the y and z directions 
are given, P, = 1. 

Table I shows some timings of typical cases comparing the transpose method and 
the distributed FFT method. In each case P, = 1 so that the double transpose (11) 
was not done. The x-transform was performed locally on the first index. Only the 
two-dimensional FFT was distributed. One timestep using the distributed FFT 
method takes consistently about 27% less time than one timestep using the trans- 
pose method. The number of arithmetic operations for the two methods is the same. 
The amount of communication for the transpose method is similar to that of the 
distributed FFT method. 

The reason for the difference in the two methods is that in the block transpose, 
d- 1 stages require a time consuming gather-scatter operation. This operation is 
indicated by the double bracket in Fig. 5. A better compiler or assembly-coded 
gather-scatter routines [9] will tend to decrease the time required for this opera- 
tion. The transpose method will then be competitive with the distributed FFT 
method. 

Table II shows the total time and communication time for one timestep of the 
distributed FFT method, single precision, 12g3 mesh, and 1024 processors. Each 
row corresponds to a different subdomain partitioning. As a larger percentage of 
processors are employed in the x direction, the times increase. There is a large 
jump between P, =0 and 1, due partly to a second local transpose that must be 
performed in the latter case. The increase in both total and communication times 
is due to the inefficiencies in the parallel RCS transform. 

Table III shows results similar to those in Table II, except that only the y and -7 
directions are distributed, and the mesh size is 64 x 256*. The changes in partition 
of the y-z plane have little effect on the ,amount of time required for one timestep. 

VI. CONCLUSIONS 

The goal of this work was to assess the parallelization of the Fourier pseudospec- 
tral method for Navier-Stokes simulations. It was found that while the amount of 
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data to be communicated is large and scales with the dimension of the problem, the 
actual performance on problems of current interest is remarkably good. For a 
problem with a mesh of 1283 points, the efficiency on a 1024~node hypercube is 
about 83 O/b, and one timestep takes 17 s of wall-clock time. The code was written 
entirely in FORTRAN with no optimization, assembler coding, or vectorization. 

The high efficiencies are due to the fact that the only operation that requires 
communication is the FFT and that the parallel FFT is load-balanced and efficient 
for multi-dimensional transforms. The block transpose method is attractive for the 
multi-dimensional transform; however, more time is required than the distributed 
FFT method due to the inefficient gather-scatter operation. Efficiency of double 
precision runs is lower than that of single precision because the amount of com- 
munication is double in the former. Subdomain shape effects performance only 
through the degree of distribution in the x direction. The parallel real-to-conjugate 
symmetric transform, used in the x direction, is less efficient that the parallel com- 
plex-to-complex FFT that is performed in the other directions. 

In practice, each processor of the NCUBE/2 is about 5 times more powerful than 
that of the NCUBE/l. A realistic estimate of elapsed time per timestep for a 1024’ 
mesh run on 8192 processors with 8 Mbytes of memory is about 5 min for an a!! 
FORTRAN code, 
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